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Scientists, to understand the importance of allelic polymorphisms on phenotypes that are quantitative and envi-
ronmentally interacting, are now turning to population-association screens, especially in instances in which pedigree
analysis is difficult. Because association screens require linkage disequilibrium between markers and disease loci,
maximizing the degree of linkage disequilibrium increases the chances of discovering functional gene-marker as-
sociations. One theoretically valid approach—mapping by admixture linkage disequilibrium (MALD), using recently
admixed African Americans—is empirically evaluated here by measurement of marker associations with 15 short
tandem repeats (STRs) and an insertion/deletion polymorphism of the AT3 locus in a 70-cM segment at 1q22-23,
around the FY (Duffy) locus. The FY polymorphism (546TrC) disrupts the GATA promoter motif, specifically
blocking FY erythroid expression and has a nearly fixed allele-frequency difference between European Americans
and native Africans that is likely a consequence of a selective advantage of FY5/5 in malaria infections. Analysis
of linkage disequilibrium around the FY gene has indicated that there is strong and consistent linkage disequilibrium
between FY and three flanking loci (D1S303, SPTA1, and D1S484) spanning 8 cM. We observed significant linkage-
disequilibrium signals over a 30-cM region from 54.4 to 16.3 cM (from D1S2777 to D1S196) for STRs and at
26.4 cM (AT3), which provided quantitative estimates of centimorgan limits, by MALD assessment in African
American population-association analyses, of 5–10 cM.

Introduction

The detection of polymorphic genes that influence quan-
titative traits, disease states, and other characters is the
goal of population-genetic–association studies, but such
detection depends on the persistence of measurable link-
age disequilibrium (i.e., haplotype-allele association)
among markers and discovered loci. In European Amer-
icans, the extent and usefulness of linkage disequilibrium
is limited by recent population history (Bodmer 1986;
Laan and Pääbo 1997; Huttley et al. 1999). The power
of this approach depends on how far linkage disequilib-
rium extends over a chromosomal interval, which in turn
determines the spacing and number of markers required
for a genome scan. An approach to maximization of the
linkage-disequilibrium interval for gene-localization
studies involves mapping by admixture linkage disequi-
librium (MALD), whereby populations composed of re-
cently mixed ethnic groups display transient linkage dis-
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equilibrium over longer centimorgan intervals, for �20
generations, as a consequence of admixture (Briscoe et
al. 1994; Stephens et al. 1994). Theoretical and simu-
lation studies that predict the limits of population pa-
rameters influencing MALD assessment have been de-
scribed (Chakraborty and Weiss 1988; Chakraborty et
al. 1991; Briscoe et al. 1994; Stephens et al. 1994), but
empirical demonstration of the effect in the human pop-
ulation has not been reported with short tandem repeats
(STRs).

The African American descendants of native Africans,
some of whom first arrived in the United States 1450
years ago, are ideal subjects for MALD-based
association ascertainment. Native African slaves were
present in the Spanish colonies that are now part of
the United States as early as 1526 and were present in
British colonies as early as 1619. A total of
∼380,000–570,000 native Africans were brought to the
United States; the largest number arrived during
1790–1808 (Parra et al. 1998). Official population es-
timates indicate that the U.S. African American popu-
lation has grown, by births and additional immigration,
from 760,000 in 1790 to 34.9 million at present (U.S.
Census Bureau). Studies have shown that African Amer-
icans represent an admixed population with significant
genetic contributions from both African and European
ancestors. Recent estimates of the proportion of Eu-
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ropean American genes in African American popula-
tions range from 6.8%, for Sapelo Island, GA, to 26%,
for Chicago (Long 1991; Chakraborty et al. 1992; Parra
et al. 1998; Destro-Bisol et al. 1999).

MALD assessment provides tremendous potential for
discovery of novel genes involved in common diseases.
As a test of the technique, we examined the region ad-
jacent to the Duffy chemokine-receptor locus (FY on
chromosome 1q22-23), which carries a biallelic poly-
morphism (“�” denotes an intact promoter GATA mo-
tif, and “�” denotes a promoter motif disrupted by a
�46 TrC substitution, GACA), which abrogates Duffy
receptor expression on erythroid cells. There are no
known phenotypic costs for the lack of expression of
the FY gene, since African Americans who do not ex-
press the Duffy antigen in their red blood cells are not
known to suffer any adverse effects and have red blood
cells with no apparent abnormalities. FY expression has
been observed in other tissues, such as spleen and en-
dothelial cells in FY�/� individuals (Chaudhuri et al.
1995; Hadley and Peiper 1997). Indeed, the FY� allele
probably arose as a consequence of selection for resis-
tance to malaria (Miller et al. 1976; Horuk et al. 1993;
Hadley and Peiper 1997). The FY� allele is effectively
monomorphic in European Americans, whereas the
FY� allele is nearly fixed in native Africans (Roychoud-
hury and Nei 1988). In this report, we quantify the
length and extent of linkage disequilibrium due to pop-
ulation admixture, in an 80-cM interval around the FY
locus, on the basis of the nonrandom association of FY
group-specific alleles with 15 STR loci and with the AT3
insertion/deletion polymorphism.

Subjects and Methods

Subjects

Human DNA was extracted from immortalized lym-
phoblastoid B cell lines established from subjects in six
cohorts developed for AIDS epidemiology studies (Smith
et al. 1997). The cohorts were those of the AIDS Link
to the Intravenous Experience (ALIVE [Vlahov et al.
1991]), D. C. Gay Cohort Study (DCG; Goedert et al.
1987), Human Growth and Development Study (HGDS
[Loveland et al. 1994]), Multicenter AIDS Cohort Study
(MACS [Ginzburg et al. 1988]), Multicenter Hemo-
philiac Cohort Study (MHCS [Goedert et al. 1989]), and
San Francisco City Clinic Study (SFCC [Jaffe et al.
1985]).

Genotyping

Polymorphisms in the human AT3 gene that were due
to the presence of 32- or 108-bp nonhomologous DNA
(Bock and Levitan 1983; Wu et al. 1989), the STR loci
(Hentati et al. 1992; Dib et al. 1996), and the FY poly-

morphism (Tournamille et al. 1995; Iwamoto et al.
1996) were assayed (table 1). The FY polymorphism was
typed in 2,909 European American and African Amer-
ican individuals from the six HIV-1/AIDS cohorts listed
above: ALIVE (34 European Americans and 665 African
Americans), DCG (235 European Americans and 18 Af-
rican Americans), HGDS (210 European Americans and
20 African Americans), MACS (790 European Ameri-
cans and 105 African Americans), MHCS (553 Euro-
pean Americans and 70 African Americans), and SFCC
(201 European Americans and 8 African Americans). A
stratified sample of African Americans was selected on
te basis of FY genotypes, which consisted of �/� (n =

), �/� ( ), and some �/� ( ) individuals38 n = 121 n = 139
from the ALIVE ( ), HGDS ( ), MACS (n = 274 n = 4 n =

), MHCS ( ), and SFCC ( ) studies, along10 n = 9 n = 1
with European American FY �/� ( , from MHCS),n = 48
for genotyping with the STRs and AT3. STR map lo-
cations and the GenBank accession numbers for flanking
sequences were obtained from Généthon. The selection
of STR primers and dyes (FAM, HEX, or TET) for mul-
tiplexing was made on the basis of product size and
color. Primer synthesis was performed by Genosys.

PCR was performed in 96-well plates with PE Bio-
systems model 9600 thermal cyclers. Reactions were
generally carried out in 15-ml volumes containing 50 ng
of genomic DNA, 0.5 mM of each primer, 250 mM of
each dNTP, 10 mM Tris-HCl, 50 mM KCl, 0.6 U of
AmpliTaq Gold DNA polymerase (PE Biosystems), and
specified MgCl2 concentrations (table 1). Amplification
consisted of 35 cycles of 30 s at 94�C, 30 s at the in-
dicated annealing temperature, and 1 min at 72�C. Re-
actions were incubated for 9 min at 94�C before PCR
and for 10 min at 72�C after PCR. PCR products of the
individual STR reactions were combined into pooled
panels, mixed with loading buffer and GENESCAN-350
TAMRA-labeled markers, and resolved on a PE Bios-
ystems 377 sequencer with Long Ranger gel mix (FMC
Bioproducts), under standard conditions specified by the
manufacturer. Gels were analyzed with GENESCAN
2.0, and then alleles were binned and assigned on the
basis of estimated sizes. Genotypes were determined by
GENOTYPER 2.1 software (PE Biosystems).

Statistical Analysis

Commercial and custom software packages were used
in the analysis. Fisher’s exact test and a log-likelihood-
ratio x2 test (G-test) were performed, with the SAS sys-
tem, on the Advanced Biomedical Computing Center
DEC Alpha AXP computer. Contingency analysis of
linkage disequilibrium between FY genotypes and flank-
ing markers was examined, in African Americans, with
all of the alleles at each locus, by the log-likelihood-ratio
x2 test in four genetic models and on the basis of the
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Table 1

Summary of Loci Studied, PCR Conditions, and Primer Sequences

Locusa

Annealing
Temperature

(�C)
MgCl2
(mM)

Allele
Size
(bp)

Primer Sequenceb

(5′r3′)

D1S206 55 1.5 195–223 )
D1S252 55 1.5 92–120 )
D1S514 60 2 310–336 TTTTCATCTACCTATCTCATCCAGC

GTCAGACTTCCATCTGGACTAATAGG
D1S2346 60 2 122–158 TTTATCTTGCCCTGCACCTC

GCTCCATCCTGTGTCCTCCC
D1S2777 60 2 314–344 GCACCACGGAACTCCAGTAT

5′GTGACCTCCTGGCTCAAGC
D1S303 60 2 99–119 AGCGAAACTCCATCTCAATACA

GTGTTTGTATGTATGCATGTATGTGT
SPTA1 60 2 233–251 TGTAAATATGCACACAAACACAAGC

TGCAGCAATATATGGACCCA
D1S2635 60 2 138–162 TAGCAGATCCCCCGTC

GTGAATCCTACCCCTAAGTAGAAT
FYc 59 1.5 150, 172 CCCTCATTAGTCCTTGGCTCgTA d

AACAGCAGGGGAAATGAGG
D1S484 55 2 268–280 )
D1S2705 60 2 248–268 TGCCCATACCACATTGGTC

GAAACAGGCCACACTCAATATT
D1S2768 60 2 193–213 GAGGCCAGGAGAAGTAAATGG

GAAATCCCCGCACATATTTGA
D1S2844 60 2 169–205 CCCAGCCTTCCCTATTGTCT

GTCCATCTTTGTGGAAATAAATGA
D1S196 55 2 309–323 )
D1S452 60 2 114–132 AAGCACTTTTCTCTCCCTCTCC

GCATCCCTCCACTTGCAAATT
AT3e 57 2 496, 572 CCACAGGTGTAACATTGTGT

GAGATAGTGTGATCTGAGGC
D1S238 55 1.5 291–317 )

a Polymorphisms at each locus are STRs, except for a single-nucleotide variant (FY) and an
insertion/deletion (AT3).

b Primer sequences shown were designed with Primer 0.5 (Lincoln et al. 1991), except for
those for D1S2635 (Dib et al. 1996), AT3 (Wu et al. 1989), and FY; an ellipsis denotes that
primer sequences were from the PE-ABI alpha test set of microsatellite markers.

c Products were digested with RsaI (5 U) for 2 h to overnight at 37�C and were resolved on
agarose gels.

d Primer has a misincorporated g at the �3 position, which generates a RsaI site when the
C is present in the FY� allele.

e Products were directly resolved on agarose gels.

presence or absence of individual alleles by means of
Fisher’s exact test. The four genetic models considered
were � dominant (�/� vs. �/� or �/�), � dominant
(�/� vs. �/� or �/�), codominant (�/� vs. �/� vs.
�/�), and homozygous only (�/� vs. �/�). The re-
sulting raw P values were corrected for multiple com-
parisons with the step-down Holm-Sidak procedure (Si-
dak 1967; Holm 1979; Sokal and Rohlf 1995; Weir
1996; Ludbrook 1998), for the number of tests per-
formed per locus, for allelic tests, and for the 16 loci
considered in the four genetic models tested (table 2 and
fig. 1). The step-down Holm-Sidak adjustment for mul-
tiples tests uses the formula , where n′ nP = 1 � (1 � P)
is the number of P values greater than or equal to that
being corrected. This correction results in an unbiased

probability with a uniform distribution from 0 to 1,
unlike the overly conservative Bonferroni correction
(mP, where m is the total number of tests), which has a
distribution from 0 to 11 (Sokal and Rohlf 1995; Weir
1996; Ludbrook 1998). An evaluation of the P values
serves as an indication of the strength of linkage dise-
quilibrium for multiallelic loci such as STRs (Peterson
et al. 1995).

Haplotypic Estimation

Approximate haplotype frequencies were estimated,
for the purpose of calculation of linkage-disequilibrium
coefficients, with FY�, by the EM algorithm (Long et
al. 1995). Because of the stratified oversampling of �/�



Table 2

Significant Associations between FY and Flanking Polymorphic Loci and Their Alleles

Name
Distancea

(cM) Composite d

LOCUS TESTS ALLELE TESTS

Modelb P P′ c Size D′ d P e P′ c

D1S206 �32.5 .282 Codominant .036 205 .129 .019

203 �.850 .034

213 .071 .047

D1S252 �15.0 .214 110 .256 .011

D1S514 �12.7 .353 Homozygous .042 324 �.325 .011

D1S2346 �6.6 .357 � Dominant .050 142 .421 .008

� Dominant .0078 128 �.490 .014

Codominant .017 134 1.000 .024

Homozygous .0036 .028

D1S2777 �4.4 .254 � Dominant .0078 322 �.646 .0015 .017

� Dominant .0064 326 .234 .011

Codominant .0091

Homozygous .0012 .010

D1S303 �4.4 .312 � Dominant �55.0 # 10 .00065 115 .790 �62.2 # 10 �52.0 # 10

� Dominant �82.6 # 10 �73.8 # 10 111 .276 .00017 .0013

Codominant �81.3 # 10 �71.9 # 10 107 �.388 .004 .030

Homozygous �81.1 # 10 �71.4 # 10 109 �.659 .011

SPTA1 �.9 .304 � Dominant �61.9 # 10 �52.6 # 10 237 .482 �94.0 # 10 �84.0 # 10

� Dominant �62.5 # 10 �53.5 # 10 239 �.398 .0035 .031

Codominant �82.7 # 10 �73.5 # 10 235 �.673 .0061 .048

Homozygous �95.8 # 10 �88.2 # 10

D1S2635 .0 .332 � Dominant �93.7 # 10 �85.9 # 10 150 �.736 �86.3 # 10 �78.2 # 10

� Dominant �113.3 # 10 �105.2 # 10 146 .455 �62.2 # 10 �52.7 # 10

Codominant �136.7 # 10 �111.1 # 10 148 �.612 �53.1 # 10 .00035

Homozygous �143.6 # 10 �135.7 # 10 156 .663 .00022 .0022

154 .203 .0046 .040

158 .404 .027

D1S484 3.8 .240 � Dominant �71.5 # 10 �62.3 # 10 268 �.894 �73.8 # 10 �62.6 # 10

� Dominant �51.7 # 10 .00022 276 .490 .00044 .0026

Codominant �82.3 # 10 �73.2 # 10

Homozygous �91.9 # 10 �82.8 # 10

D1S2705 5.0 .193 � Dominant .0016 .031 260 �.440 .033

Codominant .0035 258 �.513 .037

Homozygous .00056 .0056 268 .276 .044

D1S2768 6.7 .311 � Dominant .0010 .012 193 �.998 .020

� Dominant .0059 201 .217 .022

Codominant .0016 .017 203 .183 .033

Homozygous .00011 .0013

D1S2844 9.1 .131 191 .185 .011

189 �.561 .019

(continued)
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Table 2 Continued

Name
Distancea

(cM) Composite d

LOCUS TESTS ALLELE TESTS

Modelb P P′ c Size D′ d P e P′ c

D1S196 16.3 .233 � Dominant .0010 .011 315 .459 �63.0 # 10 �52.4 # 10

� Dominant .011

Codominant .0019 .018

Homozygous .00020 .0022

D1S452 23.7 .273 � Dominant .0089 126 .158 .0079

Codominant .045 122 �.761 .025

Homozygous .010

AT3 26.4 .358 � Dominant �52.1 # 10 .00025 496 �.176 �58.3 # 10 .00017

Codominant �58.4 # 10 .0010 572 .176 �58.3 # 10 .00017

Homozygous .036

D1S238 36.6 .247 � Dominant .012 293 1.000 .0082

Codominant .013

NOTE.—Data are for significant allelic and locus associations based on a model for the loci examined around the FY locus.P � .05
a Relative to FY (found at 170.1 cM on chromosome 1). Radiation-hybrid locations for FY and the linked coding genes SPTA1 and

AT3 were obtained from GeneMap’98 (Deloukas et al. 1998) and were converted to equivalent centimorgan values by interpolation
using the radiation-hybrid locations of flanking Généthon STR markers. The determination that two YACs (887G1 and 788B1) previously
shown to contain SPTA1 and D1S2635 (Hudson et al. 1995) contain FY (a determination made by PCR analysis) localized these three
markers to within a cloned 1.7-Mb segment, confirming their proximal locations.

b See Statistical Analysis subsection.
c Adjusted on the basis of either the number of alleles at a locus or the 16 loci considered in each genetic model. Only values �.05

are shown.
d For linkage with FY� in African Americans.
e From two-tailed Fisher’s exact tests performed on a 3#2 contingency table of African American FY genotypes, by frequencies of

each allele (the number of alleles of that type vs. alternative alleles).

and �/� individuals, additional genotypes were esti-
mated in the �/� and �/� classes. To accurately rep-
resent FY and STR genotype frequencies in the popu-
lation, an additional 415 �/� samples were estimated,
on the basis of allelic frequencies observed in the �/�
sample and 158 �/� samples, by multiplying �/� fre-
quencies by �/� frequencies. The EM-algorithm dise-
quilibrium coefficients were used to estimate the nor-
malized linkage disequilibrium coefficient (D′), to judge
relative magnitude (Lewontin 1964).

Results

Loci in Linkage Disequilibrium

Initially, the FY-promoter polymorphism was char-
acterized in European Americans and African Americans
(2,023 European Americans and 886 African Ameri-
cans), in whom the frequencies were .991 and .203, re-
spectively, for the FY� allele (FY� allele frequencies are

�). Allele frequencies for 48 European Ameri-1 � FY
cans and 298 African Americans were determined, and
D′ values are available from the Laboratory of Genomic
Diversity. Statistical tests for admixture linkage dise-
quilibrium (ALD) between the loci and alleles at each

locus and the alleles of FY found substantial ALD (table
2 and fig. 1). Analyses with the four FY genetic models
� dominance (�/� vs. others), – dominance (�/� vs.
others), codominance (�/� vs. �/� vs. �/�), and ho-
mozygote-only comparisons (�/� vs. �/�), in contin-
gency tests with a second dimension of allele counts from
the African American samples, found strong linkage dis-
equilibrium across the region (table 2). For two models
of genetic association—FY codominant and homozy-
gote-only comparisons—the plots of the extent of pair-
wise ALD between FY and adjacent loci, illustrate the
strong core of ALD over 8 cM and significant signals
across 30 cM. Some linkage disequilibrium was seen
between the AT3 locus and D1S452, located ∼2.7 cM
away ( to .002, for the equivalent four geneticP = .05
models), in addition to the AT3 FY ALD described be-
low. However, the more distant flanking markers were
not significantly associated with AT3 from D1S2635 to
D1S238 ( to .01 [analysis not shown]). AnalysesP = .94
with all four genetic models consistently found signifi-
cant ALD, from �4.4 to 3.8 cM, between FY and the
loci D1S303, SPTA1, D1S2365, and D1S484 ( ′P =

to 6 # 10�13). Around this core of ALD from.0002
�6.6 to 6.7 cM, at least one model resulted in significant
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Figure 1 Degree of linkage disequilibrium in African Americans, at 16 loci spanning 70 cM around the FY locus. At each locus, multiple-
test–corrected probabilities from two genetic models are shown, as both a codominant comparison of all three genotypes (�/� vs. �/� vs. �/
�) and a comparison of homozygotes (�/� vs. �/�). Log-likelihood-ratio x2 contingency tests of FY genotypes on the basis of flanking marker
alleles are shown as log-linear plots of P′ in relation to distance (cM) from FY. The dotted line separates significant ( ) results from the′P = .05
remainder.

ALD between FY and each of the additional flanking
loci D1S2346, D1S2777, D1S2705, and D1S2768
( to .001). Additional significant associations, at′P = .03
16.3 and 26.4 cM, for D1S196 and AT3, respectively,
suggest that ALD can extend across 30 cM.

Alleles in Linkage Disequilibrium

A further analysis of linkage disequilibrium was made
on the basis of an examination of individual alleles of
loci linked to FY, through estimation of allele frequencies
for each racial-genotypic category and statistical tests of
these data on an allele-by-allele basis (table 2). Specific
alleles at flanking loci were associated with the FY poly-
morphism even when raw P values were corrected (P′;
see the Subjects and Methods section) for the number
of alleles tested at a locus (table 2; 37 of 176 STR alleles,
many of which are rare, for and 15 alleles forP � .05

). Many of the significant alleles have frequen-′P � .05
cies in European Americans that are similar to those seen
in �/� African Americans, with �/� being intermediate
and with �/� being at the extreme (fig. 2), as predicted
for ALD. In particular, from �4.4 to 3.8 cM, alleles at
the loci D1S2777, D1S303, SPTA1, D1S2635, and
D1S484 showed strong and consistent ALD ( to′P = .05

and to .790; table 2). Strong allelic�8 ′4 # 10 D = �.894
associations were also seen at 16.3 and 26.4 cM
(D1S196, allele 315, and ; AT3,′ ′P = .00002 D = .46
both alleles, and ). These allelic results′P = .0002 D = .18
also show both strong and consistent STR-based ALD
at the same �4.4-to-3.8 cM core ( to )′ �8P = .05 4 # 10

and additional strong signals at 16.3 and 26.4 cM
( to .00002). In the 23-cM genetic segment′P = .0002
defined by D1S2346 (�6.6 cM) to D1S196 (16.3 cM),
all 10 STR loci examined, except D1S2844 (9.1 cM),
show at least one significant multiple-test–corrected as-
sociation, and the significant associations with the AT3
insertion/deletion extends the ALD region to ∼30 cM.

Discussion

Extent of ALD around FY

Linkage disequilibrium is fundamentally the nonran-
dom association of alleles among different loci. The FY-
promoter polymorphism provides an excellent test of
ALD because of the essentially fixed allele-frequency dif-
ferences between native African and European American
populations. Linkage disequilibrium between FY and the
flanking STR loci is readily detectable over a wide range
of genetic distances, from �4.4 to 16.3 cM. Seven of
eight STR loci in this 23-cM region from D1S2346 to
D1S196 yielded at least one significant corrected P′ value
( to in one of the allelic or locus tests;′ �13P = .05 6 # 10
table 2). The confirmation of ALD between FY and the
AT3 locus previously reported in African Americans
(Parra et al. 1998) extends the total region of ALD to
30 cM. The most striking and statistically consistent
genetic-model–based locus tests were across an 8-cM
core around FY (from D1S303 to D1S484, ′P = .0008
to ).�136 # 10

Finding disease-causing lesions of either European
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Figure 2 Allele frequencies from loci around the FY locus that have significant allelic differences between FY�/� African Americans,
FY�/� African Americans, and FY�/� African Americans, with color coding reflecting, in a clockwise pattern, the most-significant to the
least-significant test results. Only alleles with are shown individually, and those which were still significant after multiple-test correctionP � .05
(P′) are marked as follows: *, ; **, ; ***, ; ****, ; and *****, . Alleles whose initial P value′ ′ ′ ′ ′P � .05 P � .01 P � .001 P � .0001 P � .00001
was �.01 but was not significant after correction for multiple comparisons are denoted by a “pound” sign (#). Allele frequencies from European
Americans (�/�) are shown for comparison.

American or native African origins in African Americans
is practical in MALD, as judged by the ability of all four
genetic models to efficiently reveal ALD around FY in
this nearly ideal instance. The analysis of all African
American individuals with European American-derived
FY alleles versus those without (� dominant model: �/
� and �/� vs. �/�) was significant for STRs from �4.4
to 16.3 cM (from D1S303 to D1S196, to .0007).′P = .01
The converse test—of all those African Americans with
African FY alleles versus those without any (� dominant
model: �/� vs. �/� and �/�)—was significant over a
smaller region, from �4.4 cM to 3.8 cM (from D1S303
to D1S484, to ), with the AT3 locus′ �7P = .0002 4 # 10
at 26.4 cM also showing significance ( ). The′P = .0003
codominance model of �/� versus �/� versus �/� also

detected ALD, from �4.4 to 16.3 cM (D1S303 to
D1S196, to ) and at 26.4 cM with the′ �7P = .02 2 # 10
AT3 insertion/deletion ( ). The strongest results′P = .001
were obtained with the homozygotes-only comparisons
of �/� versus �/�, from �6.6 to 16.3 cM (from
D1S2346 to D1S196, to ). The pattern′ �13P = .03 6 # 10
of significance, which indicates the strength of linkage
disequilibrium (Peterson et al. 1995), peaks at the locus
closest to FY (D1S2635; to ) and′ �8 �13P = 6 # 10 6 # 10
declines in either direction. The strong 8-cM core of
ALD is flanked by additional significant markers, ex-
tending it to �16 cM, and some signals indicate a 30-
cM region. It is reasonable to suppose that a genome
scan would have seen any of these signals. Further anal-
ysis saturating the region with markers similar to those
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used in our study would then localize the strongest signal
to within a few centimorgans of FY.

History of Admixture in African Americans

It is difficult to predict expected levels of disequilib-
rium, since actual levels depend on the interaction of
multiple forces, including recombination, genetic drift,
migration, and natural selection. In the case of disequi-
librium caused by admixture, it also depends on the
pattern of admixture and on the allele frequencies and
their differences between the admixing populations. One
can use the standard linkage-disequilibrium/recombi-
nation–decay calculation to calculate the “half-life” of
initial levels of linkage disequilibrium in a simple sce-
nario in which recombination is the major determinant.
For instance, 13.5 generations is enough to reduce initial
disequilibrium by 50% when markers are separated by
5 cM, whereas 69 generations are needed for the same
effect at 1-cM separation. However, since only 6.6 gen-
erations are needed to reduce by half the disequilibrium
at distances of 10 cM, it is reasonable to assume that
appreciable ALD seen at �10 cM has been maintained,
to some extent, by recurrent admixture in African
Americans.

Implications for MALD

The analysis of the loci examined in the present report
provides information on the suggested features of a
MALD genome-scanning marker set. As predicted, those
loci with smaller differences between African Americans
and European Americans—as measured by one index of
information content, composite d (the sum of positive
allele-frequency differences, at a locus, between African
Americans and European Americans [Shriver et al. 1997;
Stephens et al. 1999])—were only somewhat less able
to allow detection of ALD than were loci at equivalent
distances from FY (e.g., D1S2777 vs. D1S303; table 2).
The locus-based P′ values were generally more sensitive
to linkage disequilibrium than were the allelic ones, by
several orders of magnitude—with one important ex-
ception, at 16.3 cM, where the results of locus tests of
D1S196 ( to .002) were much less significant′P = .02
than those of its allele 315 ( ). Overall, these′P = .00002
observations suggest that a 5–10-cM MALD map with
marker-enriched differences between the founding pop-
ulations used for MALD analysis will be sufficient for
genome scans.

Recent theoretical analyses pointing out the power of
the transmission/disequilibrium test (TDT [Spielman et
al. 1993]) (McKeigue 1997; Rabinowitz 1997; Kaplan
et al. 1998; McKeigue 1998; Zheng and Elston 1999)
for MALD disease-gene discovery suggest that the TDT
may yield larger regions of ALD or may require fewer
samples. The present study is defined by the FY geno-

types, similar to the situation in a case-control study,
and it used (a) fewer patients who had a “disease” d

larger than that assumed in previous simulations (1.0
vs. .3) and (b) similar marker-allele-frequencydifferences
( , vs. an average composite d of .27 [Briscoe et al.d = .3
1994; Stephens et al. 1994]). Although all of the as-
sumptions of complex disease-gene mapping are not
met, the analysis of FY suggests the utility of a case-
control design in MALD. The case-control design offers
advantages over the TDT, when age at onset is late and
parents are frequently unavailable for study, but this
design must be balanced against possible false-positive
findings from population stratification (Lander and
Schork 1994; Altshuler et al. 1998). Both the remarkably
strong degree of ALD around FY and the success of
multiple analyses to detect it empirically affirm MALD
as an approach to the finding of genes associated with
disease in African Americans and other recently admixed
populations, while suggesting that a 5–10-cM marker
density is appropriate for MALD genome scans.
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